

Customizing VFP's Tools

Session ???

Tamar E. Granor, Ph.D.

Voice: 215-635-1958

Email: tamar_granor@compuserve.com

Overview

Many of Visual FoxPro's tools, such as the Class Browser, the Builder system and the Coverage

Profiler, are extensible. This session looks at the architecture of some of VFP's tools and

demonstrates how to "have it your way." Familiarity with VFP and some experience using the

tools is assumed.

Tools and More Tools
Visual FoxPro includes a large collection of tools. Some, like the Form and Class Designers, are

built right into the product. But many others are written in Visual FoxPro – Microsoft refers to

these collectively as "Xbase tools" (because they're written in FoxPro, that is, Xbase, rather than

C). The Xbase tools include the Class Browser and its alter ego, the Component Gallery; the

Builders and Wizards; the Coverage Profiler; and, in VFP 7, the IntelliSense Manager; the Task

List Manager; and the Object Browser.

Replacing Xbase tools

VFP has a system variable corresponding to each of the Xbase tools. The variable points to the

program to run for that tool. For example, the _Browser variable points to "Browser.APP" in the

VFP home directory. Table 1 shows the list of Xbase tools, their corresponding system variables

and the default values of those variables. (Note that there are some other system variables that

point to programs, but those routines either don't fit the definition "tool," or aren't written in

Xbase.)

Table 1 FoxPro's Xbase tools –Each Xbase tool has a system variable that points to the

code to run.

Tool System Variable Default value

Builders _BUILDER HOME() + "Builder.App"

Class Browser _BROWSER HOME() + "Browser.App"

Component Gallery _GALLERY HOME() + "Gallery.App"

Coverage Profiler _COVERAGE HOME() + "Coverage.App"

IntelliSense Manager _CODESENSE HOME() + "FoxCode.App"

Object Browser _OBJECTBROWSE

R

HOME() + "ObjectBrowser.App"

Task List Manager _TASKLIST HOME() + "TaskList.App"

Wizards _WIZARD HOME() + "Wizard.App"

The system variables, in fact, provide an alternative way to run the various tools. Rather than

choosing a tool from the menu or toolbar, you can also run it by DOing the corresponding

variable. For example, to start the Coverage Profiler, you can issue this command:

DO (_COVERAGE)

One way to customize a tool is to replace it entirely and set the appropriate variable to point to

your replacement. That's the strategy used by the GENMENUX menu generator wrapper

program. To use it, you set _GENMENU to point to GenMenuX.PRG.

One of the built-in tools can also be replaced – the Expression Builder. Set _GETEXPR to point

to the program you'd rather use and both the IDE and calls to GETEXPR use the program you

specify.

In VFP 6 and later, the source code for the Xbase tools comes with VFP. (Unzip XSource.ZIP in

the Tools directory.) So another customization strategy is to modify or subclass the existing code,

if it doesn't do exactly what you want.

But the truth is that most of us would find either replacing or modifying code for any of the tools

a daunting task.

Open Architecture
Fortunately, there are other ways. Several of the tools (the Class Browser/Component Gallery,

the Coverage Profiler, and the Object Browser) accept "add-ins," pieces of code you write and

then can call from specified points in the tool.

The Builder and Wizard system is table-driven. To add a builder or wizard, you add a record to

the appropriate driver table.

While the IntelliSense Manager itself can't be customized, IntelliSense in VFP is itself table-

driven. (The table is referenced through the _FOXCODE system variable.) The IntelliSense

Manager provides several ways of changing IntelliSense behavior.

The Task List Manager is also table-driven, with the table referenced through the _FOXTASK

system variable. In addition, its interface provides the ability to add custom fields to tasks and

have any or all of those fields displayed in the Task Manager. The Task List's object model also

makes it possible to add and manipulate tasks programmatically.

Even VFP's built-in tools, like the Project Manager and most of the Designers, have open

architecture. Each of them stores their data in a table that uses special extensions. Table 2 shows

the file extensions used for each tool.

Table 2 Designer Open Architecture – Most of VFP's built-in tools store their data in a

table with special extensions.

Tool Table (DBF) Memo fields (FPT)

Class Designer VCX VCT

Form Designer SCX SCT

Label Designer LBX LBT

Menu Designer MNX MNT

Project Manager PJX PJT

Report Designer FRX FRT

It's possible to directly manipulate data from these tools by modifying the tables directly. In

addition, projects offer the ProjectHook class, which has methods that fire when various events

occur on the project. For example, you can write code to run whenever a file in the project is

modified.

Add-ins

An add-in a program hooked into another program. It generally manipulates the properties of the

host program, and may use the host's methods to do so. An add-in performs a task not built into

the host program.

The Class Browser, Component Gallery, Coverage Profiler and Object Browser all support add-

ins. However, the techniques for specifying and using them vary with the tool.

The Class Browser and Component Gallery (which are really two faces for the same tool) have

an AddIn method that lets you register and unregister add-ins. Add-ins in the CB/CG can either

be added to a menu of add-ins or hooked to a specific event, such as the Click of a particular

button.

The Coverage Profiler has an Add-ins item on its context menu and toolbar. When you choose an

add-in to run, you can also specify that it should be registered and thus made available for future

Profiler sessions. In addition, you can use the AddTool method of the Coverage Profiler's main

form to add a button or other control that runs an add-in.

The Object Browser also includes an Add-ins item on its context menu that offers the

opportunity to install an add-in. Add-ins can also be installed and removed using the Add-ins

page of the Options dialog.

Add-ins for the Class Browser, Component Gallery and Coverage Profiler are usually programs,

but can be any directly executable piece of code (such as a form, an APP or an EXE). Object

Browser add-ins are classes, usually VCX-based, and work best when subclassed from the

_baseaddin class provided.

Adding to the Class Browser
The Class Browser provides an easy way to look inside class libraries to see the relationships

among classes, as well as the structure of individual classes. It's a remarkably capable tool. (For

thorough coverage of the Class Browser's abilities, see the Egger book listed in the "Resources"

section.) Figure 1 shows the Class Browser listing the classes for the SuperClass toolbar.

Figure 1 Using the Class Browser – The Class Browser lists classes and their members.

However, there are some tasks you might want to do with your class libraries that aren't included.

To give you the ability to add such tasks, the Class Browser includes add-in capability.

Whenever an instance of the Class Browser is running, a public variable _oBrowser is created, if

necessary, and given an object reference to the active Class Browser object. This reference is

useful for registering add-ins, as well as for checking the state of the Class Browser.

Registering Class Browser add-ins

Attaching an add-in to the Class Browser is easy. When you call the Class Browser's AddIn

method, the add-in is added to the Class Browser's registration table (Browser.DBF in the VFP

home directory). From that point on, the add-in is available. Add-ins do not need to be re-

registered each time you run VFP or the Class Browser.

The AddIn method has six parameters, but you'll usually use only the first three. The first two are

required. Here's the syntax:

_oBrowser.AddIn(cName , cProgram [, cMethod])

cName is the name of the add-in, which appears on the add-in menu, if the cMethod parameter is

omitted. cProgram is the program to run when the add-in is called. The optional cMethod

parameter lets you specify that the add-in should run automatically when a particular Class

Browser event fires.

For example, to register an add-in called MyAddIn, which is implemented by MyAddIn.PRG in

the folder c:\apps\utils, you'd issue:

_oBrowser.AddIn("MyAddIn", "c:\apps\utils\MyAddIn.PRG")

To register the same add-in, but set it up to fire whenever the Class Browser's Activate method

fires, register it like this:

_oBrowser.AddIn("MyAddIn", "c:\apps\utils\MyAddIn.PRG", "Activate")

To register an add-in to fire based on an event of one of the Class Browser's controls, include the

control name in the event name. For example, this call indicates that the add-in should fire when

the user right-clicks on the Add button:

_oBrowser.AddIn("MyAddIn", "c:\apps\utils\MyAddIn.PRG", ;

 "cmdAdd.RightClick")

A given add-in can only be fired in one way, so if we issued the three calls to AddIn shown here

in sequence, the add-in would be called only when the user right-clicks on the Add button.

Finally, to unregister an add-in, call the AddIn method, but pass .null. for the cProgram

parameter. For example, to unregister the add-in registered above, issue:

_oBrowser.AddIn("MyAddIn", .null.)

Structuring a Class Browser add-in

When a Class Browser add-in is called, no matter what triggers it, it receives a single parameter:

an object reference to the Class Browser itself. This provides the add-in with the ability to access

the Browser object's properties and methods without using the _oBrowser variable. This is

important because it's possible to have multiple instances of the Class Browser open, so you don't

know which instance the _oBrowser variable points to.

The add-in itself can contain any code at all. For testing purposes, you may want to create a

simple add-in, like the following:

LPARAMETERS oBrowser

WAIT WINDOW "This is the add-in"

RETURN

However, a useful add-in is likely to work with the Class Browser's object model. Its properties

and methods are documented in the VFP Help file (see the topics "Class Browser Properties" and

"Class Browser Methods"). Some of the key PEMs you're likely to work with are listed in Table

3.

Table 3 Class Browser PEMs – The Class Browser has a rich object model. These

properties and methods are likely to be used in many add-ins. See Help for the complete

list.

Name Property/Method Purpose

aClassList Property An array property containing a list of all the classes and

forms in the class list, with one row for each.

AddFile Method Opens an existing class library or form, without closing

the files that are already open.

Name Property/Method Purpose

aFiles Property An array property containing a list of all the files currently

open in the Class Browser, with one row for each file.

cClass Property Contains the name of the currently selected class in the

class list.

cClassLibrary Property Contains the name of the class library for the currently

selected class in the class list.

cFileName Property The full path to the file containing the item currently

selected in the class list.

ExportClass Method Generates and, optionally, displays code for the class,

form or file selected in the class list.

ModifyClass Method Opens the currently selected class in the Class Designer,

optionally opening the method editor to a specified

method.

NewFile Method Creates a new class library and, optionally, opens it in the

Class Browser.

OpenFile Method Opens an existing class library or form in the Class

Browser, closing the files that are already open.

RedefineClass Method Changes the parent class of the currently selected class.

RemoveClass Method Removes the selected class from its class library.

RenameClass Method Renames the selected class in the class list.

SeekClass Method Moves the class list pointer to the specified class.

SeekMember Method Moves the member list pointer to the specified member.

SeekParentClass Method Moves the class list pointer to the parent class of the

currently selected class, opening the library containing the

parent class, if necessary.

Using a Class Browser add-in

Running a Class Browser add-in is much easier than writing it or registering it. If the add-in is

hooked to a Class Browser event, simply triggering that event runs the add-in. If the add-in was

placed on the Class Browser menu, right-click anywhere on the Browser, except in the areas that

hold the class list and member list. The context menu that appears includes an Add-ins… item.

(Figure 2 shows the Class Browser's context menu.) Choose that item and a list of menu add-ins

appears. Choose the add-in you want to run.

Figure 2 Running an add-in – To run an add-in that isn't attached to a Class Browser

event, choose Add-ins from the context menu.

An example: Subclassing a class library

Whenever I start a new project, I want to subclass each of my personal base classes, to provide a

starting point for the project. This task sounds like something that should be easy in the Class

Browser, but in fact, doing it there is quite a tedious, manual operation. Clearly, an automated

process is called for.

The add-in should prompt for a name and location for the destination class library, then make a

copy of every class from the currently selected class library (the source), placing the copies in the

destination library. Before moving to code, we need to consider some other issues for the add-in.

Many people use prefixes or suffixes on class names to indicate their position in the class

hierarchy (distinguishing abstract classes from concrete) or to specify the client or project a class

is meant for. So, the add-in needs a way to change the prefix and/or suffix of the class name.

Figure 3 shows the main interface to the Create Sublibrary add-in. It allows the user to specify

the destination library, to change prefixes and suffixes, and to indicate whether the new library

should be opened in the Class Browser after the task is done.

Figure 3 The Create Sublibrary add-in – This add-in subclasses every class in the current

class library. The user specifies the destination and deals with naming conventions.

It's possible that some of the classes to be copied already exist in the destination class library.

(For example, perhaps we've added some new classes to the base class library and want to update

the various copies.) The best solution is to give the user control over what happens in this case.

Figure 4 shows the approach used.

Figure 4 Handling duplication – If a class in the source class library already exists in the

destination class library, the user can choose whether to overwrite it.

The add-in consists of a main program that calls a form defined in code. While an SCX-based

form can be used as an add-in, a coded form allows the add-in to be distributed as a single file.

The main program does a lot of error checking. If all is well, it instantiates and shows the form,

passing an object reference to the Class Browser.

The form contains a tabless pageframe with two pages (shown in Figures 3 and 4). It creates its

controls from a number of other classes defined in the same file. The form uses two cursors

created in the Load method. Classes contains the list of classes in the library to be copied (the

source), while Preexists holds the list of classes in the destination library that duplicate classes to

be copied. The key methods are ValidateCopy, DetectDups and CopyLibrary.

ValidateCopy drives the whole copy process-it's called by the OK button on the first page (Figure

3). First, it creates the new name for each class by removing the old prefix and suffix and adding

the new ones. Then it updates the Classes cursor with the new name. When all the names have

been transformed, DetectDups is called to create a list of duplicate class names. If any matches

are found, the second page (Figure 4) is activated and the method ends. If no class names are

duplicated, CopyLibrary is called to perform the copy. Here's the code for ValidateCopy:

PROCEDURE validatecopy

* Creates the new class names and posts them to the Classes Cursor

* Calls either the copy method or the page with the grid for resolving

* the duplicate names

LOCAL lcNewClassName, lcNewPreFix, lcOldPrefix, lcNewSuffix,

LOCAL lcOldSuffix

SELECT Classes

WITH Thisform.pageframe1.page1

 SCAN

 * Get the old class name in the existing library

 lcNewClassName = ALLTRIM(OldClassName)

 IF .chkRetainNames.Value

 * If no mods were requested, post the old name as the new

 * and get the next one

 REPLACE NewClassName WITH lcNewClassName

 LOOP

 ENDIF

 * Get the name change requests

 lcNewPrefix = ALLTRIM(.txtNewPrefix.Value)

 lcNewSuffix = ALLTRIM(.txtNewSuffix.Value)

 lcOldPrefix = ALLTRIM(.txtOldPrefix.Value)

 lcOldSuffix = ALLTRIM(.txtOldSuffix.Value)

 IF NOT EMPTY(lcOldPreFix)

 * If a prefix is to be removed

 IF UPPER(LEFT(lcNewClassName,LEN(lcOldPrefix))) = ;

 UPPER(lcOldPrefix)

 * If that prefix is on this class name, remove it

 lcNewClassName = SUBSTR(lcNewClassName,LEN(lcOldPrefix)+1)

 ENDIF

 ENDIF

 IF NOT EMPTY(lcNewPreFix)

 * If a prefix is to be added, add it

 lcNewClassName = ALLTRIM(lcNewPrefix) + lcNewClassName

 ENDIF

 IF NOT EMPTY(lcOldSufFix)

 * If a suffix is to be removed

 IF UPPER(RIGHT(lcNewClassName,LEN(lcOldSuffix))) = ;

 UPPER(lcOldSuffix)

 * If that suffix is on this class name, remove it

 lcNewClassName = SUBSTR(lcNewClassName,1,;

 LEN(lcNewClassName)-LEN(lcOldSuffix))

 ENDIF

 ENDIF

 IF NOT EMPTY(lcNewSufFix)

 * If a suffix is to be added, add it

 lcNewClassName = lcNewClassName + ALLTRIM(lcNewSuffix)

 ENDIF

 * Post the new name

 REPLACE NewClassName WITH lcNewClassName

 ENDSCAN

ENDWITH

* Detect any classes that may preexist in the destination library

ThisForm.DetectDups()

* Did any get found

LOCATE FOR Preexists

IF FOUND()

 * If yes, display the grid for overwrites

 ThisForm.Pageframe1.ActivePage = 2

 * Since the grid page does the copying if requested get out of here

 RETURN

ENDIF

* Do the actual copying of the classes

Thisform.CopyLibrary()

RETURN

ENDPROC

DetectDups checks the new names against the list of classes in the destination library and adds a

record to Preexists for each match it finds. Here's the code:

PROCEDURE detectdups

* Searches target library for existing classes with duplicate names

LOCAL nExisting, aExistingClasses[1], nMatches, aMatches[1], nMatchPos,

LOCAL lcNewLib, lcOldLib

lcOldLib = ALLTRIM(Thisform.Pageframe1.Page1.txtSourceLibrary.Value)

lcNewLib = ALLTRIM(;

 Thisform.Pageframe1.Page1.txtDestinationLibrary.Value)

IF NOT FILE(lcNewLib)

 * The target library does not exist, then there is nothing to do here

 RETURN

ENDIF

SELECT Classes

* Get a list of classes in the target library

nExisting = AVCXClasses(aExistingClasses, lcNewLib)

IF nExisting > 0

 * If there are any, compare existing classes to classes in

 * source library

 nMatches = 0

 FOR nClass = 1 TO nExisting

 * Search the source new class names for a match

 LOCATE FOR UPPER(TRIM(NewClassName)) = ;

 UPPER(TRIM(aExistingClasses[nClass, 1]))

 IF FOUND()

 * If we found a matching name, mark the Preexists Field of the

 * Classes cursor

 REPLACE PreExists WITH .T.

 INSERT INTO Preexists (NewClassName) ;

 VALUES (Classes.NewClassName)

 ENDIF

 ENDFOR

ENDIF

RETURN

ENDPROC

CopyLibrary is called, as explained above, from the ValidateCopy method. It's also called from

the Copy button on the second page of the form. The method creates the destination class library,

if it doesn't already exist, then subclasses all the classes, except those marked by the user not to

be overwritten.

While the Browser has a method called NewClass, unfortunately, it doesn't let you store the new

class in a library other than the one currently selected. It also can only create classes based on the

VFP base classes and the classes in the current library. So, creating the subclasses isn't as simple

as calling NewClass for each class in the class library.

CopyLibrary uses the CREATE CLASS command instead, as it has all the flexibility needed.

However, it doesn't have a NOSHOW clause to create the new class silently. CREATE CLASS

always opens the Class Designer, so CopyLibrary uses KEYBOARD to issue the appropriate

keystrokes to save the new class and close the designer.

Here's the code for CopyLibrary:

PROCEDURE copylibrary

LOCAL lcNewLibrary, lcOldLibrary, lcNewClass, lcOldClass

* Get name of the target library

lcNewLibrary = ALLTRIM(;

 Thisform.PageFrame1.Page1.txtDestinationLibrary.Value)

* Get name of the source library

lcOldLibrary = ALLTRIM(;

 Thisform.PageFrame1.Page1.txtSourceLibrary.Value)

* Check for any preexisting classes

SELECT Preexists

IF RECCOUNT() > 0

 * If any preexisting classes mark them according to the users choice

 SCAN FOR CopyOver

 SELECT Classes

 LOCATE FOR NewClassName = Preexists.NewClassName

 REPLACE CopyOver WITH .T.

 ENDSCAN

ENDIF

SELECT Classes

IF NOT FILE(lcNewLibrary)

 * If the target library does not exist create it

 CREATE CLASSLIB (lcNewLibrary)

ENDIF

* Process the classes in the source library

SCAN

 IF NOT Classes.Preexists OR (Classes.Preexists AND Classes.CopyOver)

 * If the class is new to the target or it is marked to be

 * an over write

 IF Classes.Preexists

 * If this is an over write remove the existing class

 * from the target

 REMOVE CLASS (ALLTRIM(Classes.NewClassName)) OF (lcNewLibrary)

 ENDIF

 * Set up to shut down the Class Designer

 KEYBOARD "{CTRL+F4}Y"

 * Create the class

 CREATE CLASS (ALLTRIM(Classes.NewClassName)) OF (lcNewLibrary) ;

 AS (ALLTRIM(Classes.OldClassName)) FROM (lcOldLibrary)

 ENDIF

ENDSCAN

* Now open this library if requested

IF THISFORM.Pageframe1.Page1.chkOpenLib.Value

 This.oBrowser.AddFile(lower(lcNewLibrary))

ENDIF

RETURN

ENDPROC

The complete add-in is included in the materials for this session as NewLib.PRG.

NLReadme.TXT is a readme file for this add-in.

Enhancing the Component Gallery
The Component Gallery is another face for the same application as the Class Browser. (The main

program of Gallery.APP calls Browser.APP, passing a parameter to indicate that it should open

in "gallery mode.")

This means that the technique for registering add-ins is the same – call the AddIn method – and

that Component Gallery add-ins also receive a reference to the calling Browser/Gallery instance.

Unfortunately, the resemblance ends there. While the Class Browser PEM's are well-documented

and several articles have been written about extending the Class Browser, the Component

Gallery's PEM's are totally undocumented (there aren't even descriptions of them in the main

Browser form) and no such articles exist.

The best way to figure out what Component Gallery PEM's are relevant to a particular task is to

open the Component Gallery, then explore its members in the Debugger and Command Window,

using the _oBrowser reference. Table 4 shows some of the key properties for the Component

Gallery.

Table 4 Component Gallery properties – Unfortunately, these aren't documented

anywhere. This list shows some of the key items.

Name Purpose

aFolderList An array property containing one member for each catalog or folder

available. Each item is an object reference to a _folder object.

aItemList An array property containing one member for each item of each folder that's

been examined during this session. Each array element is either an object

reference to an object based on (or subclassed from) the _folder or _item

class, or contains a delimited list with key information about the item.

cCatalog The currently chosen catalog.

nFolderCount The number of folders in aFolderList.

nFolderListIndex The position of the currently selected catalog in aFolderList.

nItemCount The number of items in aItemList.

nItemListIndex The position of the currently selected item within the current folder.

oCatalog An object reference to the currently selected catalog.

oFolder An object reference to the currently selected folder.

oItem An object reference to the currently selected item.

The Component Gallery also offers an entirely different approach to extension. You can create

your own item types that can be used in the Gallery just like the types provided. The Egger book

listed in the Resources section explains this approach in detail.

Extending the Coverage Profiler
The Coverage Profiler takes a coverage log (created by issuing SET COVERAGE TO

<filename> or by turning coverage logging on in the Debugger) and turns it into meaningful

information. It offers information about which lines were executed and which were not, as well

as timing information for those lines which were executed.

The Coverage Profiler can be enhanced in a variety of ways. Its design separates interface from

implementation - there's a coverage engine class and a coverage interface class. Each can be

subclassed independently and it's also possible to create an entirely new user interface for the

coverage engine. The Nicholls article listed in the Resources section discusses a variety of

subclassing options.

The COV_TUNE.H include file (in the VFPSource\Coverage directory, when you unzip the

provided source) allows you to fine-tune various Coverage Profiler behavior. It's well

commented to show you what effects your changes will have. Of course, once you make changes,

you'll need to rebuild COVERAGE.APP.

The simplest way to extend the Coverage Profiler, though, is with add-ins. As with the Class

Browser/Component Gallery, it's easy to attach add-ins to the Coverage Profiler. The Coverage

Profiler's toolbar and context menu both contain an Add-ins item. When you choose it, a dialog

(shown in Figure 5) appears. The dialog allows you to locate and execute an add-in. The

dropdown contains a list of all add-ins executed in this Coverage Profiler session.

Figure 5 Running a Coverage Profiler add-in – This dialog allows you to find, run, and

register Coverage Profiler add-ins.

The checkbox in the dialog lets you register an add-in. Once registered, the add-in appears in the

dropdown every time you use the Coverage Profiler. By default, the list of registered add-ins is

stored in the Registry (in the key HKEY_CURRENT_USER\Software\Microsoft\Visual

FoxPro\<version>\Coverage). While there's no mechanism provided for unregistering an add-in,

it is possible to delete the relevant Registry key.

Add-ins receive as a parameter an object reference to the Coverage Profiler engine object. There's

also a public variable, _oCoverage, that points to this object.

The object model for the Coverage Profiler's engine is well documented in the VFP Help. (See

the Coverage Engine Object topic.) Two properties you're likely to use in almost any add-in are

cSourceAlias, which contains the alias for a cursor containing the parsed coverage log, and

cTargetAlias, which contains the alias for a cursor containing processed coverage data.

Many Coverage Profiler add-ins won't need to deal with any other properties, but will simply

process the data in one or both cursors. An example of a Coverage Profiler add-in that processes

the raw log data follows the discussion of the Task List.

The Coverage Profiler makes it easy to add to its own interface. The cov_maindialog_standard

form class, which is used for the Coverage Profiler's main form, has an AddTool method. This

method accepts a class name as parameter and adds an instance of that class to the Coverage

Profiler form.

Customizing the Task List
VFP 7 offers a new tool, the Task List, which contains shortcuts to lines of code and any other

tasks a developer chooses to add. Tasks can be added through the Task List interface (shown in

Figure 6) or by setting shortcuts in code editing windows.

Figure 6 The Task List – This tool, new in VFP 7, lets you manage reminders and pieces of

code that need attention.

As with the other Xbase tools, the Task List's source code is provided. VFP 7 also includes two

documents that describe the Task List's object model and specifications. However, there's no add-

in mechanism and the object model is not documented in the Help file.

So why include this tool in a session on extending VFP's tools? Because, despite these

shortcomings, there are a few things you can do with the Task List without subclassing or

replacing its code.

As with the other tools, a public variable (_oTaskList) containing object reference to the tool is

created when you open it.

The tool provides for a list of custom fields, in addition to the built-in list. Right-click and

choose Options. There you can specify or create a "user-defined column table." This table must

include a 10-character UniqueID field (used to link the custom fields to the standard ones), but

otherwise you can specify whatever fields you want.

Since the task data is stored in a table, it's possible to add tasks programmatically. However, it's

better to work through the Task List's object model than just use straight VFP code.

The technique for adding a new task is a little roundabout (but similar to the way you add items

to Outlook). First, you request an empty task object using the GetTaskObject method. When

you've filled it in, you add it to the list using the AddTask method. The task object has a property

for each field, whether built-in or custom. The property name is the field name preceded by an

underscore ("_"). For example, the Contents field is represented by an _Contents property.

Editing tasks uses a similar paradigm. The GetTask method accepts the unique id of a task and

returns a task object. The UpdateTask method accepts a task object and updates that task in the

table.

An example: A Coverage Profiler add-in to add tasks to the

Task List

Generally, once you've run a coverage log and looked at the results, you have a number of items

for your "to do" list. So, an obvious enhancement to the Coverage Profiler is an automated way

of adding tasks based on coverage information.

This add-in decides what tasks to create based on the amount of time a line took to execute and

the number of times it was executed. A form (see Figure 7) lets you choose the criteria for

sending lines to the task list. Behind the scenes, the Coverage Profiler and Task List objects are

used to figure out which lines are affected and to create a task for each.

Figure 7 Creating tasks automatically – This Coverage Profiler add-in adds a task for each

line in the log that meets the specified criteria.

This add-in is implemented as a single form (CovToTask.SCX in the session materials), with a

number of custom properties and methods. The main processing method is ProcessLog, partially

shown here. (Two additional IF blocks handle the other two conditions for adding tasks.)

LOCAL lRetVal

This.computelinetimes()

IF This.laddforavgtime

 SELECT * ;

 FROM LineTotal ;

 WHERE nAvgTime > This.navgtime ;

 INTO CURSOR AboveAverage

 lSuccess = .T.

 SCAN WHILE lSuccess

 * Bail out if the addition fails

 lSuccess = This.addtask(ObjClass, Executing, ProcLine, ;

 HostFile, nAvgTime, "Average Time")

 ENDSCAN

 USE IN AboveAverage

 lRetVal = lSuccess

ENDIF

* Code to process the log for the other two conditions

* omitted for space

The ComputeLineTimes method contains a single query that consolidates information from the

coverage log. Note the use of the cSourceAlias property of the Coverage object:

* Total time, number of times, average time,

* and maximum time for each line

SELECT objclass, executing, procline, hostfile,;

 sum(duration) AS nTotalTime, count(*) AS nTimes, ;

 avg(duration) AS nAvgTime, MAX(duration) AS nMaxTime ;

 FROM (This.ocoverage.cSourceAlias) ;

 GROUP BY objclass, executing, procline, hostfile ;

 INTO CURSOR linetotal

The AddTask method ensures that we have a reference to the Task List, then creates and adds a

task. (Assertions for parameter checking are omitted here.)

* Add a task to the task list

LPARAMETERS cObjClass, cExecuting, nProcline, cHostfile, nTime, cReason

 * First four params come right from coverage log

 * Fifth parameter is measured time

 * Last parameter is test failed

* Assertions omitted for space

LOCAL oTask

IF This.Gettasklist()

 WITH This.oTasklist

 oTask = .GetTaskObject()

 WITH oTask

 ._Type = "S"

 IF UPPER(JUSTEXT(cHostFile)) <> "SCX"

 ._Class = ALLTRIM(cObjClass)

 ELSE

 ._Class = ""

 ENDIF

 IF INLIST(UPPER(JUSTEXT(cHostFile)), "SCX", "VCX")

 ._Method = ALLTRIM(cExecuting)

 ELSE

 ._Method = ""

 ENDIF

 ._Line = nProcLine

 ._FileName = ALLTRIM(cHostFile)

 ._Contents = This.FindCodeLine(cHostFile, cExecuting, ;

 nProcLine)

 ._cReason = ALLTRIM(cReason) + " " + TRANSFORM(nTime)

 ENDWITH

 .AddTask(oTask)

 ENDWITH

 lRetVal = .T.

ELSE

 lRetVal = .F.

ENDIF

RETURN lRetVal

AddTask uses two additional methods of the class. GetTaskList gets a reference to the task list

object, starting the tool, if necessary. It also ensures that the user-defined column table exists and

includes a column called cReason. (To do so, it uses an instance of another class, cusSaveTable,

that includes methods to store information about all open instances of a table, and to reopen a

table in all data sessions where it was previously open.) FindCodeLine returns the actual code for

a specified line-it's fairly standard VFP string-handling code.

This add-in reveals a bug in VFP's internal handling of task shortcuts. If the case in the Method

field doesn't exactly match VFP's "native" case, the shortcut icon doesn't appear when the file is

opened. ("Native" case means camel-case for method names and defined case for controls.)

However, the file can still be opened to the right method with the cursor on the right line.

Microsoft is aware of the bug.

Building a Builder
The Builder technology introduced in VFP 3 may be one of the most underused facilities in the

product. Because almost all the builders included with VFP are just wizard-like formatting and

data set-up tools, very few developers realize the potential of builders. In fact, builders let you

modify forms, controls and classes under construction. Builders don't have to have a user

interface, but can perform all their actions behind the scenes.

A builder can be as simple as a few lines that grabs an object reference to something from a

designer and changes a few properties, or it can be far more complex.

Builders can be run in a variety of ways, as well, and do not have to be hooked into the built-in

Builder mechanism. You can run a builder from the Command Window or a menu item, if you

choose. However, the built-in mechanism makes it easy to make a builder available whenever it's

appropriate.

Registering builders

All builders registered in the Builder.DBF table located in the Wizards subdirectory of VFP are

available through the built-in mechanism. The structure of the Builder table is shown in Table 4.

(It's also documented in the VFP Help file.) You don't generally need to specify the ClassLib,

ClassName and Parms fields. It's sufficient to provide Name, Descript, Type and Program.

Table 4 Registering a builder – To make your builder available through VFP's Builder

mechanism, add a record to Builder.DBF containing these fields.

Field

name

Type Content

Name Character The name for your builder. This name is displayed in the Builder

Selection dialog, if there's more than one appropriate builder available.

Descript Memo The description of your builder. Displayed in the Description editbox of

the Builder Selection dialog.

Bitmap Memo Currently unused

Type Character The control class to which your builder applies. Specify "ALL" for a

builder that can be used on any type of control. Specify

"MULTISELECT" for a builder that can be applied to multiple controls

simultaneously.

Program Memo The name, including path, of the program or application to run for this

builder.

ClassLib Memo The name, including path, of the class library containing the builder.

Class Memo The name of the class within ClassLib that constitutes the builder.

Parms Memo Parameters to pass to the builder.

You can create the necessary record manually, by opening the table and using INSERT INTO or

BROWSE. However, a really handy strategy is to create a main program for your builder that

registers it, if necessary, then runs the actual builder. (Thanks to Doug Hennig for this idea.)

Here's an example (drawn from the builder discussed later in this section and included in the

session materials):

*===

* Program: BASEBUILDERMAIN.PRG

* Purpose: Run the base class builder. Self-register, if

* necessary.

* Author: Tamar E. Granor

* Copyright: (c) 2001, Tamar E. Granor

* Last revision: 07/05/01

* Parameters: As passed by the builder system

* Returns: (None)

* Environment in:

* Environment out:

*===

* Main program for BaseBuilder

LPARAMETERS uP1, uP2, uP3, uP4, uP5, uP6, ;

 uP7, uP8, uP9, uP10, uP11, uP12

* Accept parameters passed by the builder system

#DEFINE ccMAIN "BASEBUILDERMAIN"

LOCAL nOldSelect

* Self-register if called directly

IF PROGRAM(0) == ccMAIN

 nOldSelect = SELECT()

 SELECT 0

 USE HOME() + "Wizards\Builder" AGAIN

 LOCATE FOR UPPER(Name) = "BASE CLASS BUILDER"

 IF NOT FOUND()

 m.Name = "Base Class Builder"

 m.Descript = "Choose a class for base class controls"

 m.Type = "ALL"

 m.Program = SYS(16)

 INSERT INTO Builder FROM MEMVAR

 ENDIF

 USE IN Builder

 SELECT (nOldSelect)

ENDIF

* Run the actual builder

DO FORM ADDBS(JUSTPATH(SYS(16))) + "BaseBuilder" WITH ;

 uP1, uP2, uP3, uP4, uP5, uP6, ;

 uP7, uP8, uP9, uP10, uP11, uP12

RETURN

The program first checks to see whether it was run directly (as opposed to through the Builder

mechanism). If so, it checks the Builder table to see whether this builder is already registered. If

not, it registers it by inserting a record into table. After all that, it runs the program (a form, in

this case) that constitutes the actual builder.

Structuring a builder

The builder application passes up to 12 parameters to builder programs, so the main program or

Init method of any registered builder must accept those parameters. Having done so, however, it's

unlikely that you need to do anything with the parameters.

Most builders are meant to work on the currently selected object or objects. The ASelObj()

function creates an array of object references to those objects, one per row. (The function is also

capable of retrieving a reference to the container object of the selected objects, or to the data

environment of the containing form.)

Given a reference to the selected object or objects, you can write code that reads or modifies

properties and methods. Since builders operate at design-time, it's even possible to insert method

code using the WriteMethod method. Using AddObject and RemoveObject, you can change the

contents of the form or class. In VFP 6 and later, you can add properties to the objects using the

AddProperty method.

Like the builders provided with VFP, your builders can display an interface that gives the user

options. However, for some builder tasks, no interface may be needed. For example, you might

write a builder that replaces all base class controls with your subclasses. (The example below is a

variation on this theme.)

Extending the builder system

VFP's builder mechanism has a hidden feature that can be especially useful in team development

situations where one developer creates classes that other developers use. If a class has a Builder

property, requesting a builder for that class runs the program specified in the Builder property. So

the control developer can create both the control classes and builders that set up the controls

properly. Other developers can drop controls on forms (or other classes), then right-click and

choose Builder and be prompted to fill in the information necessary for the control to operate.

Ken Levy, tool developer extraordinaire, has extended the builder mechanism to make creating

builders easier. The BuilderB and BuilderD technologies make it possible to create builders

without starting from scratch each time. These approaches are well-documented in the Hennig

white paper and FoxTalk articles listed in the Resources section.

An example: Replacing base class objects

When dropping controls onto forms (or onto classes), it's easy to use a control from the wrong

class. It's especially common to use a base class control instead of the one you really want. Once

you've set properties and added code, changing the control is a pain. This builder

(BaseBuilder.SCX in the session materials) solves that problem by letting you replace a control

with any control derived from the same base class.

The builder form (shown in figure 8) has one custom property, oControl, which holds an object

reference to the control being replaced. It also has three custom methods:

 About is a documentation method that describes the form.

 EnableControls handles enabling and disabling of controls on the form as changes are

made.

 ReplaceControl performs the actual replacement of the selected control with the newly

chosen control.

Figure 8 The Base Class Builder – This builder lets you replace a control with another

control derived from the same base class.

Much of the work of the form is done in a custom control, cntCGClass (found in Utils.VCX in

the session materials), which allows the user to choose a class from those in Component Gallery

catalogs. This control uses three combos to list the catalogs, the folders within the currently

chosen catalog and the controls of the right base class within the currently chosen folder. The

control works directly with the Component Gallery's data tables.

Here's the code for the ReplaceControl method of the form:

* Replace the specified control with

* a control of the chosen class.

LOCAL oForm, oOriginalControl

LOCAL cClass, cClassLib, aOldProps[1]

cClass = This.cntcgclass.getchosenclass()

cClassLib = This.cntcgclass.GetChosenClasslib()

* First, get a reference to the containing form

oForm = This.oControl

DO WHILE UPPER(oForm.Baseclass) <> "FORM"

 oForm = oForm.Parent

ENDDO

* Save a reference to the original control

oOriginalControl = This.oControl

* Add the new control

cTempName = SYS(2015)

oForm.NewObject(cTempName, ;

 cClass, cClassLib)

oControl = EVALUATE("oForm." + cTempName)

* Copy properties

* Get properties for the original object

* Note work-around in the next line, using "#+" for flags, when

* only "#" is needed.

nOldMembers = AMEMBERS(aOriginalProps, oOriginalControl, 3,"#+")

FOR nMember = 1 TO nOldMembers

 DO CASE

 CASE "R" $ UPPER(aOriginalProps[nMember, 5])

 * Read-only, so skip it

 CASE "NAME"=UPPER(aOriginalProps[nMember, 1])

 * Name property, we'll do it later

 CASE "PROPERTY" $ UPPER(aOriginalProps[nMember, 2])

 * See whether the property has changed

 * and the new control has this property.

 * If so, copy it.

 IF "C" $ UPPER(aOriginalProps[nMember, 5]) ;

 AND PEMSTATUS(oControl, aOriginalProps[nMember, 1], 5)

 cPropName = aOriginalProps[nMember, 1]

 IF EMPTY(oOriginalControl.ReadExpression(cPropName))

 oControl.&cPropName = oOriginalControl.&cPropName

 ELSE

 oControl.WriteExpression(cPropName, ;

 oOriginalControl.ReadExpression(cPropName))

 ENDIF

 ENDIF

 CASE INLIST(UPPER(aOriginalProps[nMember, 2]), "METHOD", "EVENT")

 * See whether the method has changed

 * and whether the new control has this method

 * If so, copy the contents

 IF "C" $ UPPER(aOriginalProps[nMember, 5]) ;

 AND PEMSTATUS(oControl, aOriginalProps[nMember, 1], 5)

 cMethod = aOriginalProps[nMember, 1]

 cMethodCode = oOriginalControl.ReadMethod(cMethod)

 oControl.WriteMethod(cMethod, cMethodCode)

 ENDIF

 OTHERWISE

 * We should never get here

 ENDCASE

ENDFOR

* Remove original object

cOldName = oOriginalControl.Name

oForm.RemoveObject(oOriginalControl.Name)

* Rename new object

oControl.Name = cOldName

* Select newly added object

oForm.&cOldName..SetFocus()

RETURN

The method asks the custom control for the class name and class library selected. It then adds a

control of that class to the form, giving it a temporary name. Then, the method gets a list of the

properties and methods of the control being replaced and loops through them, copying any

changed values to the new control. The idea is that we want the new control's appearance and

behavior, except where we've already changed it in the control being replaced. When this process

is done, the original control is removed and the new control is renamed. Finally, the new control

is selected, for two reasons. First, because the replaced control was selected when the builder was

called. Second and more importantly, because VFP becomes unstable when you remove the

control that's currently selected in the property sheet.

To use the builder, run BaseBuilderMain.PRG from the Command Window once to register it.

From that point on, when you right-click and choose Builder for a control, this builder will be

available.

Controlling Projects with Project Hooks
From the introduction of the Project Manager, developers have written tools to manipulate

projects programmatically. In VFP 6, the task became much easier as objects were added to

provide programmatic access to project contents without manipulating the underlying table. The

Project and File objects, along with the corresponding collections (Projects and Files), make it

easy to examine and modify the contents of a project. However, these objects are COM objects

and cannot be subclassed in VFP to add event or method code.

Instead, at the same time, the ProjectHook base class was added. This is a native VFP class with

events that fire when things happen to the associated project. For example, the ProjectHook class

has a BeforeBuild event that fires when the process of building a project into an APP, EXE or

DLL begins. The AfterBuild event fires when the build is completed (whether successful or not).

A collection of QueryXXXFile events fire when a file is added, changed, deleted or run. So, by

subclassing the ProjectHook class and adding code, it's possible to have actions occur as a

developer works on a project.

In VFP 7, the ProjectHook class exposes three new events: Activate, Deactivate and

QueryNewFile. Activate and Deactivate fire when the project receives and loses focus,

respectively. QueryNewFile fires at the beginning of the creation of a new file for the project (for

example, when the developer clicks the New button).

Project hooks can do many different things. The prototypical example is "poor man's source

control," in which every change to the project is logged. Many developers use project hooks to

perform an assortment of actions at build time – for example, to remove printer-specific

information from reports.

Specifying a Project Hook

A project hook can be attached to a single project or shared by many. To attach a project hook to

a particular project, open the project and choose Project Info from the Project menu or the

context menu. In the Project Information dialog (see figure 9), check the Project Class checkbox.

In the dialog that appears, navigate to the project hook class and choose it.

Figure 9 Connecting a project hook to a project – Check the Project Class checkbox and

navigate to the desired class. This dialog is accessed from the Project Info item on the

Project menu and on the context menu for projects.

When a project hook is attached in this way, it's instantiated each time the project is opened.

(When you first attach the project hook, you need to close the project and reopen it to instantiate

the project hook the first time.)

It's also possible to attach a project hook manually. Each project object has a ProjectHook

property – to specify a project hook on the fly, instantiate it, then set the ProjectHook property of

the project to the object reference:

oHook = CreateObject("phkMyHook")

_VFP.ActiveProject.ProjectHook = oHook

When you attach a project hook this way, it applies only to the current use of the project. When

you close the project, the connection is lost. This is a useful approach for a special purpose

project hook rather than one you want to use on an ongoing basis. It is possible for many projects

to reference a single project hook object, so this technique might be used for some kind of

auditing process that deals with all open projects.

The Project object

For a project hook to be really useful, it needs to manipulate the Project object and its contents.

So, it's useful to know something about the structure of those objects.

The _VFP reference to the FoxPro application server has a Projects collection containing one

item for each open project. _VFP.Projects.Count property indicates the number of open projects.

The ActiveProject property of _VFP (used in the example above) contains an object reference to

the current project.

Each Project object has a number of properties, such as HomeDir (for the home directory of the

project), Name (the path and filename for the project), and BuildDateTime (the date and time of

the most recent build). It also has a Files collection, containing one item for each file in the

project. (Note that items consisting of two files, like a form or menu, have a single entry in the

Files collection.) Like Project, Files has a Count property that indicates how many items are in

the collection.

The File object has properties like Name (the path and file name), Description (the description

for this file in the project), LastModified (the date and time of the last modification to the file),

and Exclude (indicates whether the file should be excluded when building the project).

Both Project and File have a variety of methods. For File, the methods you're most likely to use

are Modify, Remove and Run, which do exactly what their names suggest. The remaining File

methods relate to integration with source control.

The Project object has only five methods: Build (to build the project), CleanUp (packs the project

file), Close (to close the project), Refresh (updates the display of the project), and SetMain (sets a

file as the main file for the project).

Creating a Project Hook

To create a project hook, you subclass the ProjectHook base class and add code to events. For

any project hook that's intended to work with a single project at a time (that is, to be attached

through the Project Info dialog), it's a good idea to set up a reference to the object.

Add an oProject property to the class. Then, in the Init method, put this code:

This.oProject = _VFP.ActiveProject

At the time the project hook is instantiated, the project it's attached to is the active project. Later

on, when project hook code runs, that may not be the case.

It's also a good idea to clean up in the Destroy method:

This.oProject = .null.

An example: Returning to the project directory

With the addition of the Activate method in VFP 7, it's possible for a project hook to easily

restore the project environment when focus returns to the project. One such environmental

setting is the current directory. When working on a project, it can be useful to have its home

directory set as the current directory. A project hook to accomplish this task (phkDirSync in

Utils.VCX in the session materials) needs only a few lines of code, in the Activate method:

* Move to the home directory of the project

DODEFAULT()

IF VARTYPE(This.oproject) = "O"

 CD (This.oproject.HomeDir)

ENDIF

Unfortunately, the Activate method doesn't fire in a couple of situations where you might expect

it to. When a project opens because VFP is set to reopen the last project at start-up time (an

option on the General page of the Options dialog), the Activate method doesn't fire. The work-

around for this case is simple: add the same code to the Init method of the project hook. Init does

fire on the way in.

The other problem time is when the project is docked. In that case, clicking on it doesn't fire the

Activate method. That's probably because toolbars don't get focus and the project can be seen as

a toolbar when it's docked. Unfortunately, understanding the problem doesn't solve it and I have

yet to find a work-around for this case.

Hooking Project Hooks

Since different projects may call for different operations, writing a number of project hooks that

each perform a single task seems a much better strategy than creating a single monster project

hook that does everything conceivable. (Individual single-purpose project hooks are also easier to

debug and maintain than "the mother of all project hooks.") However, a project can have only

one project hook attached at a time.

One solution to this problem is to manually attach each project hook when you need it, but this

approach takes away a lot of the utility of project hooks. You have to know what you need and

when.

A better approach is to hook project hooks together, creating a chain of hooks that can all be

attached at the same time, with each handling its own operations. When an event fires, the first

hook in the chain passes it to the next, which passes it to the next, and so on down the line until

the last project hook is reached. Each, in turn, performs whatever operation is has for that event.

The easiest way to create chained project hooks is to start with a project hook subclass that

facilitates chaining. Then, subclass all of your project hooks from that class. The session

materials include phkBase, a first-level project hook subclass that provides chaining.

phkBase has a custom oHook property used to attach one project hook to the next in line. oHook

has an Assign method that ensures the chain is maintained when the oHook property is set:

LPARAMETERS vNewVal

IF NOT ISNULL(m.vNewVal)

 * Adding to the chain

 IF VARTYPE(m.vNewVal) = "O" ;

 AND PEMSTATUS(m.vNewVal, "oHook", 5)

 m.vNewVal.oHook = This.oHook

 ENDIF

ENDIF

THIS.ohook = m.vNewVal

RETURN

Each event method passes the call down the chain and checks the results. Here's the code for

QueryModifyFile, for example:

LPARAMETERS oFile, cClassName

* Pass the call along to the other project hooks in the chain.

LOCAL cMethod, cParams, lReturn

cMethod = JUSTEXT(PROGRAM())

IF NOT EMPTY(cClassName)

 cParams = "'" + cClassName + "'"

ENDIF

lReturn = This.PassMethodCall(cMethod, cParams, oFile)

IF NOT lReturn

 NODEFAULT

ENDIF

RETURN lReturn

The PassMethodCall method is a centralized facility for passing calls down a level.

* Pass a method call up the calling chain.

LPARAMETERS cMethod, cParams, oFile

ASSERT VARTYPE(cMethod) = "C" AND NOT EMPTY(cMethod);

 MESSAGE "phkBase.PassMethodCall: Must pass method name"

ASSERT VARTYPE(cParams) = "C" OR ;

 (VARTYPE(cParams) = "L" AND NOT cParams) ;

 MESSAGE "phkBase.PassMethodCalls: Pass cParams as a string or omit"

ASSERT VARTYPE(oFile) = "O" OR (VARTYPE(oFile) = "L" AND NOT oFile) ;

 MESSAGE ;

 "phkBase.PassMethodCalls: Pass oFile as object reference or omit"

LOCAL cCall, lReturn

IF VARTYPE(This.oHook) = "O" ;

 AND PEMSTATUS(This.ohook,cMethod,5)

 cCall = "This.ohook." + cMethod + "("

 IF VARTYPE(oFile) = "O"

 cCall = cCall + "oFile"

 ENDIF

 IF VARTYPE(cParams) = "C"

 IF VARTYPE(oFile) = "O"

 cCall = cCall + ","

 ENDIF

 cCall = cCall + cParams

 ENDIF

 cCall = cCall + ")"

 lReturn = &cCall

ELSE

 lReturn = .T.

ENDIF

RETURN lReturn

The phkBase class also has an abstract AttachHook method. Its purpose is to set up the chain of

hooks. One good approach is to create all your special-purpose hooks as subclasses of phkBase.

Then, for a given configuration of project hooks, create a subclass that contains code only in the

AttachHook method – that code sets up the chain of hooks.

Thanks to the oHook_Assign code, all you need to do is set the oHook property to each project

hook in turn. Behind the scenes, they all get hooked together. The following code in the

AttachHook method chains the current project hook with the phkDirSynch and

phkForceDescription project hooks in the Utils class library in the session materials. (Due to a

bug in the release version of VFP 7, the phkForceDescription project hook doesn't work

correctly.)

This.oHook = NEWOBJECT("phkDirSync","Utils")

This.oHook = NEWOBJECT("phkForceDescription","Utils")

Additional assignments can be added to the list if other project hooks are to be used.

Borrow, Don't Build
When you have a special need for extending a tool, building your own may be the only way to

go. However, plenty of other people work with VFP and there are a number of add-ins, builders,

project hooks and other extensions available. Check out the libraries of the CompuServe VFP

forum (go.compuserve.com\msdevapps), the Universal Thread (www.universalthread.com) and

the Virtual FoxPro User Group (www.vfug.org), as well as the FoxPro Wiki (fox.wikis.com), for

http://go.compuserve.com/msdevapps
http://www.universalthread.com/
http://www.vfug.org/
http://fox.wikis.com/

ideas and downloadable extensions. You may also want to check back issues of the two major

FoxPro publications, FoxTalk and FoxPro Advisor, for add-ins, builders, and other extensions.

A few people have been kind enough to let me include their tool extensions with the materials for

this session. You'll find them in the AddlTools directory in the code for this session.

Resources
The documentation provided by Microsoft for extending the tools varies in both quantity and

quality. For some of the tools, there are a number of articles and white papers. A few have been

covered extensively in books. For other tools (especially the newer ones), very little is available.

More information can be found about FoxPro Advisor at www.advisor.com. Information about

FoxTalk is at www.pinpub.com/ft.

Builders

Granor and Roche, Hacker's Guide to Visual FoxPro 6.0, Hentzenwerke Publishing

(www.hentzenwerke.com), Section 5.

Hennig, Building and Using VFP Developer Tools, www.stonefield.com/techpap.html. This zip

file you download for this paper includes several builders and some project hooks.

Hennig and Morhart, Reusable Tools: Building Your Own Builders with BuilderB, FoxTalk,

12/97

Hennig, Reusable Tools: Building Builders with BuilderD, FoxTalk, 3/99

Hennig, Reusable Tools: Modifying VFP's Wizards and Builders, FoxTalk, 8/99

Class Browser

Drochak and Popp, Improving VFP 6.0's Class Browser, FoxTalk, 6/99.

Egger, Advanced Object Oriented Programming with Visual FoxPro 6.0, Hentzenwerke

Publishing (www.hentzenwerke.com), Chapter 5.

Granor, Have it Your Way!, FoxPro Advisor, 4/01.

Granor and Roche, Hacker's Guide to Visual FoxPro 6.0, Hentzenwerke Publishing

(www.hentzenwerke.com), Section 5.

Hodder, Tracking Classes and Libraries Modified By the Class Browser,

http://www.inquiry.com/techtips/vfox_pro/10min/10min1000/10min1000.asp

Levy, Extend the Visual FoxPro Class Browser with Add-Ins, FoxTalk, 1/96.

Liskin, Using the Class Browser, FoxPro Advisor, 10/99

MSDN, The Visual FoxPro 6.0 Class Browser,

http://msdn.microsoft.com/vfoxpro/technical/articles/oop.asp.

http://www.advisor.com/
http://www.pinpub.com/ft
http://www.hentzenwerke.com/
http://www.stonefield.com/techpap.html
http://www.pinpub.com/FT/FTMag.nsf/Index/E48A9E9EDD3A8F9C852568E80074E9A7?opendocument&login
http://www.pinpub.com/FT/FTMag.nsf/Index/9D94186C338D8175852568E60076C4A1?opendocument&login
http://www.pinpub.com/FT/FTMag.nsf/Index/8A380053B09F8BF7852568D900727A35?opendocument&login
http://www.pinpub.com/FT/FTMag.nsf/Index/9C28C14A09A7A3D1852568D90073A83B?opendocument&login
http://www.hentzenwerke.com/
http://www.hentzenwerke.com/
http://www.inquiry.com/techtips/vfox_pro/10min/10min1000/10min1000.asp
http://www.pinpub.com/FT/FTmag.nsf/Index/4A85702EA8C90E5D852568E90053A4EF?opendocument&login
http://msdn.microsoft.com/vfoxpro/technical/articles/oop.asp

Component Gallery

Egger, The Component Gallery: VFP's Best Kept Secret, FoxTalk, 4/01.

Egger, Advanced Object Oriented Programming with Visual FoxPro 6.0, Hentzenwerke

Publishing (www.hentzenwerke.com), Chapter 5.

Granor and Roche, Hacker's Guide to Visual FoxPro 6.0, Hentzenwerke Publishing

(www.hentzenwerke.com), Section 5.

Coverage Profiler

Nicholls, Visual FoxPro Coverage Profiler Add-ins and Subclasses,

http://spacefold.com/lisa/LSN_CoverageExtend.htm

Rubel, Coverage and Profiling ̧FoxPro Advisor, 12/98.

Rubel, Extend the Coverage Application, FoxPro Advisor, 1/99

Project Hooks

Hennig, Building and Using VFP Developer Tools, www.stonefield.com/techpap.html. This zip

file you download for this paper includes several builders and some project hooks.

Hennig, The Happy Project Hooker, FoxTalk, 9/98

Liskin, Hooking into the Project, FoxPro Advisor, 5/99

Acknowledgements
Jim Booth contributed to both the design and the code for the Class Browser add-in described

here. Doug Hennig tested several of the tools here and inspired several of the code samples. Lisa

Slater Nicholls was kind enough to make her article on the Coverage Profiler accessible on-line.

Thanks, also, to all the people who provided the tool extensions included with the session

materials.

Copyright 2001, Tamar E. Granor, Ph.D.

http://www.pinpub.com/FT/FTMag.nsf/Index/F859E253B6747C3785256A2F007631D6?opendocument&login
http://www.hentzenwerke.com/
http://www.hentzenwerke.com/
http://spacefold.com/lisa/LSN_CoverageExtend.htm
http://advisor.com/Articles.nsf/aid/RUBEM75
http://www.stonefield.com/techpap.html
http://www.pinpub.com/FT/FTmag.nsf/Index/0FCC85BE2D29AA50852568E70070C79A?opendocument&login
http://advisor.com/Articles.nsf/aid/LISKM67

